
UNIVERSITY OF OSLO
Department of Informatics

Behaviour Inference
for Deadlock
Checking
July 2012

Research Report No.
416

Ka I Pun, Martin
Steffen, and Volker
Stolz

ISBN 82-7368-379-6
ISSN 0806-3036

July 2012

Behaviour Inference for Deadlock Checking
9. July 2012

Ka I Pun1, Martin Steffen1, and Volker Stolz1,2

1 University of Oslo, Norway
2 United Nations University—Intl. Inst. for Software Technology, Macao

Abstract. This report extends our behavioral type and effect system for detect-
ing dealocks in [8] by polymorphism and formalizing type inference (wrt. the
lock types. Our inference is defined for a simple concurrent, first-order language.
From the inferred effects, after suitable abstractions to keep the state space finite,
we either obtain the verdict that the program will not deadlock, or that it may
deadlock. We show soundness and completeness of the type inference.

1 Introduction

Deadlocks are a well-known problem for concurrent programs with shared resources.
As the scheduling at run-time affects the occurrence of a deadlock, deadlocks may only
occur occasionally, and therefore are difficult to detect. Whether or not a deadlock oc-
curs in a specific run in a particular program mainly depends on if the running program
encounters a number of processes forming a circular chain, where each process waits
for shared resources held by the others [4].

Deadlock prevention (as opposed to deadlock avoidance) statically ensures that
deadlock do not occur, typically by preventing cyclic waits by enforcing an order on
lock acquisitions. This idea has, e.g., been formalized in a type-theoretic setting in the
form of deadlock types [3]. The static system presented in [3] supports also type in-
ference (and besides deadlocks, prevents race conditions, as well). Deadlock types are
also used in [1], but not for static deadlock prevention, but for improving the efficiency
for deadlock avoidance at run-time.

In contrast, in [8] used a behavioural type and effect system [2,7] to capture lock
interaction and use that behavioural description to explore an abstraction of the state
space to detect potential deadlocks. An effect system commonly captures phenomena
that may occur during evaluation, for instance exceptions. Expressive effects, which can
represent the behaviour of a program, are important for concurrent programs. In partic-
ular, the effects of our system express the relevant behaviour of a concurrent program
with regard to re-entrant locks. To detect potential deadlocks, we execute the abstraction
of the actual behaviour to spot cyclic waiting for shared locks among parallel threads in
the program.

Compared to our earlier work [8], an algorithmic behavioural type and effect infer-
ence system [6,5] is proposed to provide polymorphism for first-order programming,
and to enhance user-friendliness and usefulness: the most general type and the most
specific abstract behaviour of an implicitly-typed input program are reconstructed. The

algorithmic inference is proven to be both sound and complete with respect to the spec-
ification of the type system, while the abstraction of the behaviour is shown to preserve
potential deadlocks in the original program, i.e., if the abstraction is deadlock free, then
the corresponding program is also deadlock free, but not vice versa.

Overview

As said, this technical paper extends the previous [8] by “type-inference” or “type-
reconstruction”. In doing so we concentrate on effect-part, i.e., we ignore the underly-
ing, standard typing part when dealing with the inference problem; that part is is stan-
dard and would only notationally complicate the derivation rules without really adding
to the result.

Effect reconstruction is practically motivated. For deadlock detection we use a be-
havioral effect type system that captures sequences of lock interactions of the program.
This abstraction captured in the behavioral effects then can be used in a second stage
to potentially detect deadlocks. The type and effect system is based on explicit typing,
i.e., the user is required to in particular specify the expected locking behavior when
introducing variables; it is preferable not to burden the programmer with this but to
infer that behavior. Type inference or type reconstruction, also for effects, is a known
problem and orthogonal to the problem of the proposed method of deadlock checking,
which we develop in detail in [8] and which is based in a special form of simulation
relation (called deadlock-sensitive simulation). Therefore, we omitted effect inference
in [8] and provide details of an effect type inference algorithms in this report.

Technically, and as usual, the key to allow effective type reconstruction is the ad-
dition of type level variables. Concentrating on the effects, it basically means effect
variables, here for locks. That is not only a technical means to enable algorithmic type
reconstruction (using unification), but renders also the language more expressive by al-
lowing (universally) polymorphic functions. In our development later, we allow univer-
sally polymorphic functions, polymorphic lets, but don’t cover polymorphic recursion.

As a starting point, i.e., as specification for the algorithmic inference, we use the
previous type system with the following three changes. First, of course, the type sys-
tem now uses implicit typing, i.e., we switch from Curry-style typing to Church-style.
Secondly, we simplify the type system in that we disallow “lock types” to denote sets
of (abstract) locks which as a consequence does away with subtyping as far as lock
types are concerned. This restriction is compensated by the fact that now we allow
lock polymorphic functions. Another way of understanding the change is that we re-
placed subtype polymorphism which we used in [8] by universal polymorphism as far
as lock arguments are concerned. This restriction is also in parts technically motivated:
it allowed to separate the treatment if sub-type polymorphism from the treatment of
universal polymorphism (see also below where we describe the development slightly
more detailed). Note that here we still support subtyping as “imported” from the sub-
effecting relations to the effect-annotated function types. Finally, we restrict the devel-
opment to first-order functions. This restriction is technically motivated. In principle, as
far as type inference is concerned, higher-order functions are unproblematic of course,
after all, type inference as most commonly used today was developed in the context of

2

the λ -calculus/functional languages. In our setting with behavioral effects for deadlock
checking, we restrict to the first-order case not because of the treatment of type level
variables, but because of sub-effecting. In the presence of sub-effecting, an algorithmic
version of the type system requires to be able to calculate the minimal effect and, as
a consequence, be able to calculate the least upper bound of, for instance, two effects.
In the language for behavioral effects, which can be understood to specify traces or
sequences of lock interactions, this least upper bound of two effects ϕ1 and ϕ2 is rep-
resented as the non-deterministic choice ϕ1 + ϕ2. Due to the contra/co-variant typing
of functions, the question of least upper bound dualizes to finding the greatest lower
bound when dealing with sub-effecting on contra-variant positions. It is, however, un-
clear whether one could/should have a construction which corresponds to the dual for
+ and which is useful in finding deadlocks. For that technical reason, we leave the
treatment of higher-order functions for further research.

The main problem for an algorithmic treatment of the given specification of the type
system is to overcome the inherent non-determinism of the typing rules, when interpret-
ing them in a goal-directed manner. The two central problematic phenomena, which are
treated by non-syntax directed rules, are the two forms of polymorphism: subtyping in
the form of sub-effecting and universal polymorphism. The standard way to turn a type
system into the presence of these forms of polymorphism is to let the algorithm calcu-
late not non-deterministically an unnecessarily specific type, but to calculate, at each
point, the “best possible” one in the sense of committing in the least possible way to
any specific type. To be able to do so, it is necessary to avoid backtracking which would
yield at least an unpractical implementation, if not outright result in undecidability.
Concerning sub-effecting, this amounts to determining the minimal type which in our
setting is the type with the minimal effect. Concerning type variables and type schemes,
the best possible type is the most general type, also known as principal type, from which
all others can be obtained by substitution. As usual, unification is the mechanism to de-
termine the most general type if it exists. To deal with both mechanisms, we adopt a lay-
ered approach. In a first step, we tackle the problem of sub-typing/sub-effecting which
yields as an intermediate system which is equivalent to the specification but where the
only non-syntax directed rules are the ones dealing with universal polymorphism. In
a second step, we get rid of the remaining non-deterministic rules (generalization and
instantiation) following standard techniques. For the formulation of soundness and in
particular completeness, we follows the classic formulation of [5], which provided an
inductive proof of completeness of “algorithm W” for Hindley/Milner/Damas kind of
let-polymorphism (captured by type schemes).

In Section 2, we introduce the syntax and semantics of our calculus. Section 3
presents a non-deterministic specification of a type- and effect system and the corre-
sponding inference algorithm which reconstructs the type of an implicitly-typed con-
crete program, and captures the abstract behaviour of the program, and the conclusion
is given in Section 4.

3

2 Calculus

The abstract syntax for a small concurrent calculus with functions, thread creation, and
re-entrant locks is given in Table 1.

A program P consists of a parallel composition of processes p〈t〉, where p identifies
the process and t is a thread, i.e., the code being executed. The empty program is de-
noted as /0. As usual, we assume ‖ to be associative and commutative, with /0 as neutral
element. As for the code we distinguish threads t and expressions e, where t basically is
a sequential composition of expressions. Values are denoted by v, and let x:T = e in t
represents the sequential composition of e followed by t, where the eventual result of e,
i.e., once evaluated to a value, is bound to the local variable x. Expressions, as said, are
given by e, and threads are among possible expressions. Further expressions are func-
tion application e1 e2, conditionals, and the spawning of a new thread, written spawn t.
The last three expressions deal with lock handling: new L creates a new lock (initially
free) and gives a reference to it (the L may be seen as a class for locks), and furthermore
v. lock and v. unlock acquires and releases a lock, respectively. Values, i.e., evalu-
ated expressions, are variables, lock references, and function abstractions, where we
use fun f :T1.x:T2.t for recursive function definitions. To keep track of lock creations,
the corresponding expressions are annotated, where we assume an infinite reservoir of
locations or labels π .

P ::= /0 | p〈t〉 | P ‖ P program
t ::= v value
| let x:T = e in t local variables/sequ. composition

e ::= t thread
| v~v application
| if e then e else e conditional
| spawn t spawning a thread
| newπ L lock creation
| v. lock acquiring a lock
| v. unlock releasing a lock

v ::= x variable
| lr lock reference
| fn~x:~T .t function abstraction
| fun f :T.~x:~T .t recursive function abstraction

Table 1. Abstract syntax

The types and the effects are given in Table 2, resp. in Table 5 for the effects. Besides
basic types for integers and booleans, the calculus supports types Lr for lock references
and function types ~U

ϕ−→U , under the restriction to first-order functions. As abbrevia-
tion, the type Unit represents the empty product with () as corresponding value, i.e., the
empty tuple. For type inference or type reconstruction, we concentrate on the part we
are most interested in, namely the behavior part, in particular, the locations. To do so,

4

we assume that the user provides the underlying types, i.e., without location and effect
annotations and that they are not reconstructed by type inference. It would be straight-
forward with standard techniques, to incorporate conventional type reconstruction for
the underlying types. For the current presentation, we omit that part not to clutter the
presentation. So, the reconstruction just concerns the omitted locations for lock cre-
ation. In abuse of notation, we use T resp. U both for the annotated types from the
grammar of Table 1 and the underlying types with the annotations stripped; which is
meant should be clear from the context. Note further the simplification entailed by the
restriction to first-order functions: in absence of higher-order functions, the only vari-
ables of function type are let-bound variables, but not formal parameters of functions.
Basically it means that the type reconstruction algorithm does not need to guess (using
type-level variables) the effect annotation ϕ on functional types T1

ϕ−→ T2; for let-bound
variable, such a guess is not needed as the effect is immediately available upon analysis
of the definition of the code bound to the variable.

Polymorphism for function definitions is captured by type-level variables. In our
setting, the only type-level variables are location variables ρ representing locations π .
They may show up in the location types Lρ as well as in the effects ϕ on the latent effects
of functions. The universally quantified type (corresponding to type schemes or poly-
types) captures functions polymorphic in the locations. We abbreviate ∀ρ1. . . .∀ρn.T by
∀~ρ.T .

U ::= Bool | Int | Thread | Lr basic types
T ::= U | ~U

ϕ−→U types
S ::= T | ∀ρ.S type schemes
r ::= ρ | π location annotations

Table 2. Types and type schemes

The effects of Table 5 form a behavioral abstraction of the behavior of the concur-
rent programs wrt. the lock usage. The behavior language can be seen as a small process
algebra, for which certain algebraic laws will hold and for which we will give a seman-
tics in the form of operational rules as well. We give the definition of effects ϕ later in
Section 3.

The set of free and bound variables of a type are defined as usual, where ∀ acts as
binder; bound variables are considered up-to renaming. We write fv(T) for the set of
free variables in T . Substitutions, with typical element θ , are mappings from variables
(location) variables ρ to location annotations r. We write θT for the application of θ

to a type T , replacing all free variables of T according to θ , with renaming of bound
variables, if necessary. The domain dom(θ) of θ is defined the set of all variables where
θ(ρ) 6= ρ . Concrete substitutions we write in the form [r1/ρ1] . . . [rk/ρk] or [~r/~ρ].

5

2.1 Semantics

The small-step operational semantics given below is straightforward. We distinguish
between local and global steps (cf. Tables 3 and 4). The local level deals with execution
steps of one single thread, where the steps specify reduction steps in the following form:

t −→ t ′ . (1)

Rule R-RED is the basic evaluation step, replacing in the continuation thread t the
local variable by the value v (where [v/x] is understood as capture-avoiding substitu-
tion). Rule R-LET restructures a nested let-construct. As the let-construct generalizes
sequential composition, the rule expresses associativity of that construct. Thus it cor-
responds to transforming (e1; t1); t2 into e1;(t1; t2). Together with the other rule, which
performs a case distinction of the first basic expression in a let construct, that assures a
deterministic left-to-right evaluation within each thread. The two R-IF-rules cover the
two branches of the conditional and the R-APP-rules deals with function application
(of non-recursive, resp. recursive functions).

let x:T = v in t −→ t[v/x] R-RED

let x2:T2 = (let x1:T1 = e1 in t1) in t2 −→let x1:T1 = e1 in (let x2:T2 = t1 in t2) R-LET

let x:T = if true then e1 else e2 in t −→let x:T = e1 in t R-IF1

let x:T = if false then e1 else e2 in t −→let x:T = e2 in t R-IF2

let x:T = (fn x′:T ′.t ′) v in t −→let x:T = t ′[v/x′] in t R-APP1

let x:T = (fun f :T1.x′:T2.t ′) v in t −→let x:T = t ′[v/x′][fun f :T1.x′:T2.t ′/ f] in t R-APP2

Table 3. Local steps

The global steps are given in Table 4, formalizing transitions of configurations of
the form σ ` P, i.e., the steps are of the form

σ ` P−→ σ
′ ` P′ , (2)

where P is a program, i.e., the parallel composition of a finite number of threads running
in parallel, and σ contains the locks, i.e., it is a finite mapping from lock identifiers to
the status of each lock (which can be either free or taken by a thread where a natural
number indicates how often a thread has acquired the lock, modelling re-entrance). A
thread-local step is lifted to the global level by R-LIFT. Rule R-PAR specifies that the
steps of a program consist of the steps of the individual threads, sharing σ . Executing
the spawn-expression creates a new thread with a fresh identity which runs in parallel
with the parent thread (cf. rule R-SPAWN). Globally, the process identifiers are unique;
for P1 and P2 to be composed in parallel, the ‖-operator requires dom(P1) and dom(P2)
to be disjoint, which assures global uniqueness. A new lock is created by new L (cf.
rule R-NEWL) which allocates a fresh lock reference in the heap. Initially, the lock

6

is free. A lock l is acquired by executing l.lock. There are two situations where that
command does not block, namely the lock is free or it is already held by the requesting
process p. The heap update σ + lp is defined as follows: If σ(l) = free, then σ + lp =
σ [l 7→ p(1)] and if σ(l) = p(n), then σ + lp = σ [l 7→ p(n+1)]. Dually σ − lp is defined
as follows: if σ(l) = p(n + 1), then σ − lp = σ [l 7→ p(n)], and if σ(l) = p(1), then
σ − lp = σ [l 7→ free]. Unlocking works correspondingly, i.e., it sets the lock as being
free resp. decreases the lock count by one (cf. rule R-UNLOCK). In the premise of the
rules it is checked that the thread performing the unlocking actually holds the lock.

t1 −→ t2
R-LIFT

σ ` p〈t1〉 −→ σ ` p〈t2〉

σ ` P1 −→ σ ′ ` P′1
R-PAR

σ ` P1 ‖ P2 −→ σ
′ ` P′1 ‖ P2

σ ` p1〈let x:T = spawn t2 in t1〉 −→ σ ` p1〈let x:T = p2 in t1〉 ‖ p2〈t2〉 R-SPAWN

σ ′ = σ [l 7→ free] l is fresh
R-NEWL

σ ` p〈let x:T =new L in t〉 −→ σ
′ ` p〈let x:T = l in t〉

σ(l) = free∨σ(l) = p(n) σ ′ = σ + lp
R-LOCK

σ ` p〈let x:T = l. lock in t〉 −→ σ
′ ` p〈let x:T = l in t〉

σ(l) = p(n) σ ′ = σ − lp
R-UNLOCK

σ ` p〈let x:T = l. unlock in t〉 −→ σ
′ ` p〈let x:T = l in t〉

Table 4. Global steps

3 Type system

The type and effect system for expressions is given in Table 8. The judgments for ex-
pressions are of the form

Γ ` e : T :: ϕ (3)

where the typing context Γ = x1:T1, . . . ,xn:Tn associates (annotated) types to variables.
As assume that all variables xi are different, so Γ can be seen as a finite mapping; we
write Γ (x) for the type of x in Γ and dom(Γ) for the set of variable typed in Γ .

3.1 Effects

In specifying the syntax, we postponed the exact definition of the effects, which played
no role in formulating the operational semantics. We do that next (see Table 5), before
we can present the rules of the type and effect system in Section 3.3.

The effects are split between a global level Φ and a (thread-)local level ϕ . The
empty effect ε represents behavior without lock operations. Sequential composition and

7

Φ ::= 0 | p〈ϕ〉 | Φ ‖Φ effects (global)
ϕ ::= ε | ϕ;ϕ | ϕ +ϕ | α effects (local)
| X | recX .ϕ recursive behavior

a ::= spawn ϕ | νLr | Lr.lock | Lr.unlock labels/basic effects
α ::= a | τ transition labels

Table 5. Effects

non-deterministic choice are represented by ϕ1;ϕ2 and ϕ1 +ϕ2, respectively. Recursive
behaviour is introduced through recX .ϕ , where recX binds the recursion variable in ϕ .
Recursion is not polymorphic, i.e. location variables in the effect depend entirely on the
types that introduce them.

Labels a capture four basic effects: spawn ϕ represents the effect of creating a new
process with behaviour ϕ , while νLr means the effect of creating a new lock at program
point r. The effects of lock manipulations are captured by Lr. lock and Lr. unlock,
meaning acquiring a lock and releasing a lock, respectively, where r is again referring
to the point of creation. τ is used later to label silent transitions.

3.2 Sub-effecting

The behaviour of an effect expression describes its possible traces to over-approximate
the actual behaviour. The effects are ordered and the corresponding sub-effect relation
is formalized in Table 7. Sub-effecting, i.e. the order on effects, leads to an order ≤ on
types, in particular on function types.

Definition 1 (Subtyping and sub-effecting). The binary relations ≡ (equivalence)
and≤ (sub-effecting) on effects are given inductively by the rules of Table 7. In abuse of
notation, the subtyping relation types, relative to a given context Γ , is written S1 ≤ S2,
as well and given in Table 6. Furthermore, we define ∨ by induction on types: S

ϕ1−→ T ∨
S

ϕ2−→ T is defined as S
ϕ1+ϕ2−−−−→ T . Else ∀ρ.S ∨ ∀ρ.T = ∀ρ.S ∨ T . Else T ∨ T equals T

and ∨ is undefined otherwise.

Sequential composition is associative, with ε as neutral element (cf. rules E-UNIT
and EE-ASSOCs). The non-deterministic choice is commutative, associative, and dis-
tributes over sequential composition (cf. rule EE-COMM, EE-ASSOCc, and EE-DISTR).
Idempotence of choice is described by EE-CHOICE. Sub-effecting is reflexive (modulo
≡) and transitive. Note that sequential composition and choice are “monotone” wrt.
≤ (by SE-CHOICE2 and SE-SEQ) and the premise of SE-CHOICE1 makes sure that
all variables occurring free in the effect are covered by the context (for the other sub-
effecting rules, that is assured by induction). Monotonicity of the spawn-construct and
recursion is covered by SE-SPAWN and SE-REC. As for subtyping: Rule SE-REFL ex-
presses the reflexivity of the order. The order of two effects is lifted to function types
and universally quantified types in rule S-ARROW and S-ALL. Transitivity of subtyping
is straightforward.

8

Γ ` T ≤ T S-REFL
Γ ` ϕ ≤ ϕ ′

S-ARROW

Γ ` T1
ϕ−→ T2 ≤ T1

ϕ ′−→ T2

Γ ` S1 ≤ S2
S-ALL

Γ ` ∀ρ.S1 ≤ ∀ρ.S2

Table 6. Subtyping

recX .ϕ ≡ [recX .ϕ/X]ϕ EE-REC

ε;ϕ ≡ ϕ EE-UNIT ϕ1;(ϕ2;ϕ3)≡ (ϕ1;ϕ2);ϕ3 EE-ASSOCS

ϕ +ϕ ≡ ϕ EE-CHOICE (ϕ1 +ϕ2);ϕ3 ≡ ϕ1;ϕ3 +ϕ2;ϕ3 EE-DISTR

ϕ1 +ϕ2 ≡ ϕ2 +ϕ1 EE-COMM ϕ1 +(ϕ2 +ϕ3)≡ (ϕ1 +ϕ2)+ϕ3 EE-ASSOCC

ϕ1 ≡ ϕ2
SE-REFL

Γ ` ϕ1 ≤ ϕ2

Γ ` ϕ1 ≤ ϕ2 Γ ` ϕ2 ≤ ϕ3
SE-TRANS

Γ ` ϕ1 ≤ ϕ3

fv(ϕ1 +ϕ2)⊆ fvT (Γ)
SE-CHOICE1

Γ ` ϕ1 ≤ ϕ1 +ϕ2

Γ ` ϕ1 ≤ ϕ ′1 Γ ` ϕ2 ≤ ϕ ′2
SE-CHOICE2

Γ ` ϕ1 +ϕ2 ≤ ϕ
′
1 +ϕ

′
2

Γ ` ϕ1 ≤ ϕ ′1 Γ ` ϕ2 ≤ ϕ ′2
SE-SEQ

Γ ` ϕ1;ϕ2 ≤ ϕ
′
1;ϕ

′
2

Γ ` ϕ1 ≤ ϕ2
SE-SPAWN

Γ `spawn ϕ1 ≤spawn ϕ2

Γ ` ϕ1 ≤ ϕ2
SE-REC

Γ ` recX .ϕ1 ≤ recX .ϕ2

Table 7. Sub-effecting

3.3 Typing rules

The rules of the type system are given in Table 8. Variables, thread names, and lock ref-
erences are all values and thus have no effect (cf. rules T-VAR, T-PREF, and T-LREF).
Both branches of a conditional must agree on their type and their effect (cf. rule T-COND).
The let-construct generalizes sequential composition and its effect ϕ1;ϕ2 is the sequen-
tial composition of the effects of the constituent parts (cf. rule T-LET). Note further that
the type T1 given by the user for the variable x is from the underlying types, i.e., without
annotations, whereas the result of analyzing e1 may be annotated (with locations and
effects). So the user-given T1 must correspond to the annotated type scheme S1 with all
annotations stripped, written bS1c. Note that the operator b c applies also to quantified
types by stripping the quantifier and the related bound variables. The analysis of the
body e2 of the let-construct continues assuming the annotated type scheme S1 for the
local variable, not the underlying, declared type. Abstractions are considered as values
and therefore have empty effect (cf. rule T-ABS). Similar to the let-construct, the types
in ~T1 given by the user for the variables~x are without annotations, and must correspond
to the annotated ~T . The analysis of the function body is based on the assumption of
the annotated type ~T for the input parameters. The effect of the body in the premise
is the latent effect of the overall function, and is annotated on the function type of the
abstraction in the conclusion of the rule. Note that for the recursive function (cf. rule
T-ABSrec), the function type ~T1 −→ T2 given by the user for the function f correspond to

9

the annotated type ~T1
′ −→ T ′2 whose latent effect is guessed as the recursive effect vari-

able X in the context of the premise. The overall type of the recursive function is the
function type annotated with the recursive effect of the function body recX .ϕ . In the
rule T-APP, the function as well the tuple of arguments in an application are considered
as values and have empty effect. Therefore, the overall effect is the latent effect of the
function body.

Γ (x) = S
T-VAR

Γ ` x : S :: ε

T-PREF

Γ ` p : Thread:: ε

T-LREF

Γ ` lπ : Lπ :: ε

Γ ` v : Bool:: ε Γ ` e1 : T :: ϕ Γ ` e2 : T :: ϕ

T-COND

Γ ` if v then e1 else e2 : T :: ϕ

Γ ` e1 : S1 :: ϕ1 bS1c= T1 Γ ,x:S1 ` e2 : T2 :: ϕ2
T-LET

Γ ` let x:T1 = e1 in e2 : T2 :: ϕ1;ϕ2

b~Tc= ~T1 Γ ,~x:~T ` e : T2 :: ϕ

T-ABS

Γ ` fn~x:~T1.e : ~T
ϕ−→ T2 :: ε

b~T ′1c= ~T1 bT ′2c= T2 Γ , f :~T ′1
X−→ T ′2 ,~x:~T ′1 ` e : T ′2 :: ϕ

T-ABSrec

Γ `fun f :~T1 −→ T2.~x:~T1.e : ~T ′1
recX .ϕ−−−−→ T ′2 :: ε

Γ ` v1 : ~T2
ϕ−→ T :: ε Γ ` ~v2 : ~T2 :: ε

T-APP

Γ ` v1 ~v2 : T :: ϕ

Γ ` e : S :: ϕ

T-SPAWN

Γ `spawn e : Thread::spawn ϕ

Γ ` newπ L: Lπ:: νLπ T-NEWL

Γ ` v :Lr :: ϕ

T-LOCK

Γ ` v. lock: Lr :: ϕ;Lr.lock

Γ ` v :Lr :: ϕ

T-UNLOCK

Γ ` v. unlock: Lr :: ϕ;Lr.unlock

Γ ` e : S′ :: ϕ ′ Γ ` S′ ≤ S Γ ` ϕ ′ ≤ ϕ

T-SUB

Γ ` e : S :: ϕ

Γ ` e : S :: ϕ ρ /∈ fvT (Γ) ρ ∈ fvT (S)
T-GEN

Γ ` e : ∀ρ.S :: ϕ

Γ ` e : ∀ρ.S :: ϕ ρ = dom(θ)
T-INST

Γ ` e : θS :: ϕ

Table 8. Type and effect system

The spawn-statement is of type Thread, provided the spawned expression is well-
typed (cf. rule T-SPAWN) and the effect just expresses that the effect ϕ of the body t is
executed by a new thread. The treatment of creating a new lock at location π is straight-
forward: the expression is of (annotated) type Lπ and of effect νLπ . The non-syntax-
directed T-SUB is a standard rule of subsumption, allowing to relax types and effects
(cf. also Definition 1). The two remaining, dual rules of generalization and specializa-
tion or instantiation introduce, resp. eliminate polymorphic types (cf. rules T-GEN and
T-INST). As usual, to introduce a universally-quantified type, the typing of the corre-
sponding expression must not depend (via Γ) on the variable (here ρ) being quantified

10

over. We also assume that we only quantify over variables actually occurring in the type.
The function fvT () in the premise of the generalization rule returns the free variables
which occur in the types, but not in latent effects.

3.4 Algorithmic formulation

Next we turn the type and effect system of Section 3 into an algorithm. The reason,
why the type system in itself is non-algorithmic are the non-syntax-directed rules of
Table 8 which are the rules dealing with polymorphism of the type system. The system
supports two forms of polymorphism, subtype polymorphism (or rather sub-effecting)
captured by the subsumption rule T-SUB and universal polymorphism (in the form of
let-polymorphism for location variables) captured by the generalization and instantia-
tion rules T-GEN and T-INST. To obtain an algorithm, those rules need to be replaced
by syntax-directed counter-parts; for subtype polymorphism, the algorithm must calcu-
late the most specific type, i.e., minimal type wrt. the subtype/sub-effecting order. For
the universal polymorphism, the most general type needs to be determined. As usual,
unification is the key for that.

The definition of unification on types is standard, ignoring the latent effects for the
arrow types in the unification. Instead of unifying the latent effects ϕ1 and ϕ2 of two
arrow types, their choice ϕ1 +ϕ2 is used, over-approximating both ϕ1 and ϕ2.

Definition 2 (Unification). The most general unifier of two types is given by Table 9.
We write T = T1 ∧θ T2 if θ is an mgu of T1 and T2 and T = θT2(= θT2).

U (Int,Int) = id
U (Bool,Bool) = id

U (T1
ϕ−→ T2,T ′1

ϕ ′−→ T ′2) = let θ1 = U (T1,T ′1)
θ2 = U (θ1T2,θ1T ′2)

in θ2 ◦θ1

U (Lr1,Lr2) = let θ0 = U (r1,r2)
θ1 = U (θ0 L

r1,θ0 L
r2)

in θ1 ◦θ0
U (T1,T2) = fail in all other cases

U (r,ρ) = [ρ 7→r]
U (ρ,r) = symmetrically

U (r1,r2) = fail in all other cases

Table 9. Unification

As mentioned earlier, the generalization rule T-GEN allows to introduce universal
quantification over a variable provided the variable is not mentioned in the typing con-

11

text. For the formulation of the algorithm, the following closure operation is useful,
which generalizes over all variables, to which T-GEN applies.

Definition 3 (Closure). The closure of a type T with respect to context Γ is given as
closeΓ (T) = ∀~ρ.T , where ~ρ = fv(T)\ fv(Γ).

Definition 4 (Instantiation with fresh variables). Assume Γ ` e : T :: ϕ . We define
a fresh instance of S (wrt. Γ) by replacing all universally quantified variables of S by
fresh ones. I.e., for S = ∀~ρ.T , then INSTΓ (S) = θT , where θ = [~ρ/~ρ ′] where ~ρ ′ are
fresh variables.

The judgements of the type reconstruction algorithm look as follows

Γ `A e : T :: ϕ,θ (4)

and is interpreted as follows: under the typing context Γ , expression e is of type T and
with effect ϕ , under a substitution θ . Substitutions θ are finite and partial mappings
from location variables ρ to location annotations r. We assume that the type T and
effect ϕ already have the substitution θ applied. Note also that T is a type, not a type
scheme, which differs from the judgments used in the type system. As for the bindings
in the typing context, variables are bound to type schemes (as in the type system). The
rules for the algorithm are given in Table 10.

The type of a variable is looked up from the context Γ and a variable introduces no
constraints, i.e., the substitution is the identity id. As all values, variables have no effect
(cf. rule TA-VAR. Similarly the treatment of thread names and lock references in rules
TA-THREAD and TA-LREF). Note that S, as fetched from the typing environment,
may be a type scheme, whereas the instance T is a type (cf. Definition 4). As values,
also abstractions have no effect (cf. rule TA-ABS). The types ~T1 given by the user are
without annotations. The operator d eA used in the premise of the rule annotates T1 with
fresh variables, and function body is checked in the premise under the assumption of the
thus annotated type ~T ′1 of the input parameters~x. The latent effect of the function is the
effect of the function body. The substitution obtained from analyzing the function body
is propagated in the conclusion, with the fresh variables from the user-provided type
removed, as they are local to the body. Recursive function definitions in TA-ABSrec
use an additional fresh recursion variable X in place for the latent effect of a recursive
invocation, which is bound when entering the recursion. Note that we do not allow
polymorphic recursion: the recursive invocation of a function with parameters of type
L will fix the type of the formal parameters.

For applications (cf. rule TA-APP), the function as well as the arguments are already
evaluated, and therefore both abstraction and argument have empty effect and identity
substitution. The type of the abstraction is a function type annotated with the latent
effect. We use unification to ensure that the type of the argument is equal to the argument
type of the abstraction. The overall type and effect of the application are respectively the
output type and the latent effect of the abstraction which are specified by the unification
substitution.

The definition of conditionals (cf. rule TA-COND) first ensures the types of the two
branches are equal modulo latent effects with unification. The overall type and effect
are the least upper bound of the two types resp. two effects from the two branches.

12

The sequential composition of two expressions is constructed by the rule TA-LET.
The closure of the type of the let-bound variable is added to the context to give
polymorphism. The overall effect ϕ1;ϕ2 is the sequential composition of the expres-
sions. The remaining rules TA-SPAWN, TA-NEWL, TA-LOCK and TA-UNLOCK are
straightforward.

Γ (x) = S
TA-VAR

Γ `A x : INSTΓ (S) :: ε, id

TA-PREF

Γ `A p : Thread :: ε, id
TA-LREF

Γ `A lπ :Lπ :: ε, id

~T ′1 = d~T1eA Γ ,~x:~T ′1 `A e : T2 :: ϕ,θ ~ρ = fv(~T ′1)
TA-ABS

Γ `A fn~x:~T1.e : (θ~T ′1)
ϕ−→ T2 :: ε,θ \~ρ

~T ′1 = d~T1eA T ′2 = dT2eA Γ , f :~T ′1
X−→ T ′2 ,x:~T ′1 `A e : T :: ϕ,θ

X fresh bTc= T2 ~ρ = fv(~T ′1 −→ T ′2) θ1 = U (T,θT ′2)
TA-ABSrec

Γ `A fun f :~T1 −→ T2.x:~T1.e : (θ1θ~T ′1)
θ1(recX .ϕ)
−−−−−−→ (θ1θT ′2) :: ε,θ1 ◦θ\~ρ

Γ `A v1 : ~T ′2
ϕ−→ T ′ :: ε, id Γ `A v2 : ~T2,ε, id θ = U (~T ′2 , ~T2)

TA-APP

Γ `A v1 v2 : θT ′ :: θϕ,θ

Γ `A v : Bool:: ε, id Γ `A e1 : T1 :: ϕ1,θ1 θ1Γ `A e2 : T2 :: ϕ2,θ2 θ3 = U (θ2 T1,T2)
TA-COND

Γ `A if v then e1 else e2 : θ3θ2T1 ∨ θ3T2 :: θ3θ2ϕ1 +θ3ϕ2, θ3 ◦θ2 ◦θ1

Γ `A e1 : T ′1 :: ϕ1,θ1 S1 = closeθ1Γ (T ′1) bS1c= T1 θ1Γ ,x:S1 `A e2 : T2 :: ϕ2,θ2
TA-LET

Γ `A let x:T1 = e1 in e2 : T2 :: θ2ϕ1;ϕ2,θ2 ◦θ1

Γ `A e : T :: ϕ,θ
TA-SPAWN

Γ `Aspawn e :Thread::spawn ϕ,θ

Γ `Anewπ L :Lπ:: νLπ , id TA-NEWL

Γ `A v :Lr :: ε, id
TA-LOCK

Γ `A v. lock:Lr :: Lr.lock, id

Γ `A v :Lr :: ε, id
TA-UNLOCK

Γ `A v. unlock:Lr :: Lr.unlock, id

Table 10. Algorithmic effect inference

3.5 Soundness and completeness

Next we prove soundness and completeness of the type reconstruction algorithm from
Table 10 wrt. its specification (cf. Table 8). We start with a few technical proper-
ties, mainly about the subtyping/sub-effecting relation, substitutions, and instantiation,
which are needed for establishing those results.

3.5.1 Preliminaries The algorithm treats subjecting by giving back the best possi-
ble effect (in the sense of being minimal wrt. ≤). For conditionals, in particular, the
algorithm gives back ϕ1 + ϕ2 as latent effect, where ϕ1 and ϕ2 are the latent effects of

13

the two conditional branches. The next lemma establishes that this corresponds to the
minimal effect, and further that the corresponding type is minimal.

Lemma 1 (Least upper bound).

1. ϕ1 +ϕ2 is the least upper bound (wrt. sub-effecting) of ϕ1 and ϕ2
2. T1 ∨ T2 is the least upper bound (wrt. subtyping) of T1 and T2.

Proof. For the effects in part 1: that ϕ1 +ϕ2 is an upper bound of ϕ1 and ϕ2 is immediate
by SE-CHOICE1 (plus commutativity and transitivity of ≡). That it is the least upper
bound is shown as follows: Assume a ϕ ′ s.t. ϕ1 ≤ ϕ ′ and ϕ2 ≤ ϕ ′. By SE-CHOICE2,
this implies ϕ1 + ϕ2 ≤ ϕ ′+ ϕ ′. Since further ϕ ′+ ϕ ′ ≡ ϕ ′ by EE-CHOICE, the claim
follows. Part 2 for the types is an immediate consequence. ut

The following simple lemmas are needed later (in Lemma 29) as part of the com-
pleteness proof.

Lemma 2 (≤ and ∨). If Γ ` S1 ≤ T1 and Γ ` S2 ≤ T2, then Γ ` S1 ∨ S2 ≤ T1 ∨ T2.

Proof. Straightforward from the definitions of ∨ and ≤: The only interesting case is
where the Si’s and Ti’s are arrow types, and the lemma follows by rule SE-CHOICE2.

ut

Lemma 3 (≤ and substitution).

1. Γ ` S1 ≤ S2 implies θΓ ` θS1 ≤ θS2.
2. ϕ1 ≤ ϕ2 implies θϕ1 ≤ θϕ2.

Proof. Straightforward. ut

The following two lemma provides a characterization of subtypes of a type of a
given form (arrow type or universally quantified type scheme).

Lemma 4 (Characterization of subtypes).

1. If Γ ` T ≤ T1
ϕ−→ T2, then T = T1

ϕ ′−→ T2 with ϕ ′ ≤ ϕ .
2. If Γ ` S≤ ∀ρ.S2, then S = ∀ρ.S1 with S1 ≤ S2.

Proof. Straightforward, (under the restriction to first-order), inverting the subtyping
rules from Table 6. ut

Lemma 5 (Minimal effect). If Γ ` ϕ1 ≤ ϕ2 ≡ ε then ϕ1 ≡ ε .

Proof. By straightforward induction on the sub-effecting rules of Table 7. The only
rules which apply are the following: For SE-REFL, the result is immediate and the case
for transitivity follows by straightforward induction. The remaining cases are straight-
forward, too. ut

Thus ε is a minimal element wrt. ≤ (modulo ≡), but note that it is not the least, i.e.,
we do not have ε ≤ ϕ for all ϕ .

14

Lemma 6. If Γ ` S1 ≤ S2. Then fvT (S1) = fvT (S2).

Proof. Obvious. Note that fvT gives back the free variables without those variables
occurring in the latent effects. ut

The following is a simple observation about which variables can occur free in the
typing derivations (in the specification).

Lemma 7 (Sub-effecting and free variables).

1. If Γ ` ϕ1 ≤ ϕ2, and fv(ϕ1)⊆ fvT (Γ), then fv(ϕ2)⊆ fvT (Γ).
2. If Γ ` ϕ1 ≤ ϕ2, and fv(ϕ1) ⊆ fvT (Γ) ∪ fvT (S) for some type S, then fv(ϕ2) ⊆

fvT (Γ)∪ fvT (S).

Proof. Directly from the rules of Table 7; cf. especially rule SE-CHOICE1. ut

The algorithm does not only give back the “best” type wrt. subtyping/sub-effecting.
Unification is used to synthesize the “best” type in the sense of the most general. To
express that order, we introduce the following definitions.

Definition 5 (Instantiation and ordering). We write S1 .θ S2 for S1 = θS2 and S1 .
S2, if S1 .θ S2 for some θ . In abuse of notation we use the same notation for the order
on substitutions, i.e., θ1 .θ θ2 if θ1 = θ ◦θ2 and θ1 . θ2, if θ1 .θ θ2, for some θ . ∀~ρ.S
is a generic instance of ∀~ρ ′.S′, written ∀~ρ.S .g ∀~ρ ′.S′, iff S = [Ti/ρ ′i]S

′ for some types
Ti, and ρ j does not occur free in ∀~ρ ′.S′.

Lemma 8 (∨ and instantiation). Let S = S1 ∨ S2. If T ∈ INSTΓ (S), then T = T1 ∨ T2,
for some T1 ∈ INSTΓ (S1) and T2 ∈ INSTΓ (T2). I.e., wlog. INSTΓ (S1 ∨ S2)= INSTΓ (S1)∨
INSTΓ (S2).

Proof. Straightforward. ut

Lemma 9. If ~T1
ϕ−→ T2 .g S, then S = ∀~ρ.~T ′1

ϕ ′−→ T ′2 , s.t. ~T1
ϕ−→ T2 = [Si/ρi](~T ′1

ϕ−→ T ′2) for
some types Si.

Proof. Straightforward by the definition of generic instance. ut

Lemma 10 (Generic instance). If S1 .g S2, then INSTΓ (S1)⊆ INSTΓ (S2).

Proof. Straightforward by the definition of .g and INST . ut

Lemma 11 (Generic instance and substitution). Assume dom(θ)⊆ fv(S) and dom(θ)∩
fv(Γ) = /0. Then θ INSTΓ (S) = INSTΓ (θS).

Proof. Straightforward. Note that INSTΓ (S) uses only (fresh) variables not occurring
in Γ for instantiation for the bound variables in S and that the substitution θ affects only
the free variables in S. ut

Corollary 1. Assume dom(θ) ⊆ fvT (S2) and dom(θ)∩ fv(Γ) = /0. If S1 .g θS2, then
INSTΓ (S1)⊆ θ INSTΓ (S2).

15

Proof. By Lemma 10 and 11, INSTΓ (S1)⊆ INSTΓ (θS2) = θ INSTΓ (S2). ut

Lemma 12 (Generic instance and closure). T .g closeΓ (T), for all T and Γ .

Proof. Immediate. ut

Lemma 13 (Free variables and substitution).

1. fv(S)⊆ fv(T) implies fv(θS)⊆ fv(θT).
2. fv(S)⊆ fv(Γ) implies fv(θS)⊆ fv(θΓ).

Proof. Straightforward. ut

Lemma 14 (Free variables and substitution). Let dom(θ)= fv(T)∩X. Then fv(θT)=
fv(ran(θ))∪ (fv(T)\X).

Proof. Immediate. ut

Lemma 15 (Free variables and substitution). Assume dom(θ) = fv(T)∩X and fur-
thermore fv(ran(θ))⊆ X. Then fv(θT)\X = fv(T)\X.

Proof. The free variables of T can be split into fv(T)∩X and fv(T)\X .

fv(θT)\X = (fv(ran(θ))∪ (fv(T)\X))\X (Lemma 14)
= (fv(ran(θ))\X)∪ (fv(T)\X)
= fv(T)\X . (by assumption fv(ran(θ))⊆ X)

ut

Lemma 16 (Closure and substitution). Let dom(θ)= fv(T)∩fv(Γ). If fv(T)\ fv(Γ)=
fv(θT)\ fv(Γ) then θcloseΓ (T) = closeΓ (θT).

Proof. Immediate from the definition of closure. ut

Lemma 17 (Closure and substitution). Assume dom(θ) = fv(T)∩ fv(Γ) and further-
more fv(ran(θ))⊆ fv(Γ). Then θcloseΓ (T) = closeΓ (θT).

Proof. By Lemma 15, fv(θT)\ fv(Γ) = fv(T)\ fv(Γ), and the result follows by Lemma
16. ut

Lemma 18. Let T be a type and T .g θ∀~ρ.S, then T = θ̃θS for some θ̃ .

Proof. Obvious. ut

The following are simple facts concerning free variables in type schemes.

Lemma 19 (Free variables and closure). fv(closeΓ (T))⊆ fv(Γ) and fv(closeΓ (T))⊆
fv(T).

Proof. Straightforward by the definition of closure. ut

16

Lemma 20 (.g and instantiation). If T1 .g T2, then θT1 .g θT2

Proof. Straightforward.

Lemma 21 (Generalization). If S1 .g S2 and ρ /∈ fv(S2), then ∀ρ.S1 .g S2.

Proof. Straightforward. ut

Lemma 22. For all types, T . dbTceA.

Proof. Straightforward. ut

The following is a simple fact about substitution. Let’s write θ ↓~ρ for the projection
of θ to the variables ~ρ . Furthermore, if dom(θ1)∩ dom(θ2) = /0, we write θ1 ‖ θ2 for
the substitution θ s.t. θ(ρ) = θ1(ρ) when ρ ∈ dom(θ1) and θ(ρ) = θ2(ρ) when ρ ∈
dom(θ2).

Lemma 23. If θ1T = θ2T , then θ1 ↓fv(T)= θ2 ↓fv(T).

Proof. Obvious. ut

Lemma 24 (Disjoint domains and unifier). Assume fv(T1)∩ fv(T2) = /0. If θ1T1 = S =
θ2T2 for some substitutions θ1 and θ2, then θT1 = θT2 = S for some θ .

Proof. Wlog., dom(θ1) = fv(T1) and dom(θ2) = fv(T2), i.e., also the domains of θ1
and θ2 are disjoint. Then setting θ = θ1 ‖ θ2 gives θT1 = θ1T1 = S = θ2T2 = θT2, as
required. ut

The following lemma is ultimately crucial for the induction step in the proof of
completeness of the algorithm and is, in broad terms, a refinement of the key property
of unification: applying the most general unifier of two types yields a more general type
than any other type which results from unification.

Lemma 25 (Unification and .).

θ1T ′1 = θ2θ
′
2T ′1 T .θ1 T ′1 T .θ2 T ′2 T ′3 = θ

′
2T ′1 ∧θ ′3

T ′2
θ2 = θ3θ

′
3 T .θ3 T ′3

(5)

Proof. The following chain θ2θ ′2T ′1 = θ1T ′1 = T = θ2T ′2 shows that θ2 is a unifier of
θ ′2T ′1 and T ′2 . Since θ ′3 is the most general one, θ2 .θ3 θ ′3 for some θ3.

Using that, the second result in the conclusion is shown as follows:

θ3T ′3 = θ3θ ′3θ ′2T ′1 (by definition of T ′3)
= θ2θ ′2T ′1 (equation for θ2)
= θ1T ′1 (first premise)
= T . (second premise)

Note that alternatively, the equality can be proven using T ′3 = θ ′3T2 and the second
premise instead. ut

17

The next result is a generalization of the previous, taking into account also generic
instantiation.

Lemma 26 (Unification, . and .g).

θ1T ′1 = θ2θ ′2T ′1
S .g θ1closeθ ′1Γ ′(T ′1) S .g θ2closeθ ′2θ ′1Γ ′(T ′2) T ′3 = θ ′2T ′1 ∧θ ′3

T ′2
S .g

θ3closeθ ′3θ ′2θ ′1Γ ′(T
′

3)
(6)

Proof. By assumption we have

S .g
θ1closeθ ′1Γ ′(T

′
1) and S .g

θ2closeθ ′2θ ′1Γ ′(T
′

2) . (7)

The type scheme S is of the form ∀~ρ.T for some type T . Since T .g ∀~ρ.T = S, equation
(7) implies with transitivity of .g that also

T .g
θ1closeθ ′1Γ ′(T

′
1) and T .g

θ2closeθ ′2θ ′1Γ ′(T
′

2) . (8)

By Lemma 18, this is equivalent to

T = θ̃1θ1T ′1 and T = θ̃2θ2T ′2 . (9)

for some substitutions θ̃1 and θ̃2. As wlog the domains of θ̃1 and θ̃2 are disjoint, that
implies with the help of Lemma 24

T = θ̃θ1T ′1 and T = θ̃θ2T ′2 . (10)

for some common substitution θ̃ . The first assumption from equation (6) implies

θ̃θ1T ′1 = θ̃θ2θ
′
2T ′1 . (11)

Now the previous Lemma 25 applies, yielding

θ̃ θ̃2 = θ̃3θ
′
3 and T .

θ̃3
T ′3 (12)

for some substitution θ̃3. Now the variables of T ′3 (covered by θ̃3) can be split into
those in θ ′3θ ′2θ ′1Γ ′ (non-generic) and those not in θ ′3θ ′2θ ′1Γ ′, i.e., the generic ones.
Thus, θ̃3 can be split into θ3 with dom(θ3) = fv(T ′3)∩ fv(θ ′3θ ′2θ ′1Γ ′) and dom(θ ′′3) =
fv(T ′3)\ fv(θ ′3θ ′2θ ′1Γ ′). Furthermore,

ran(θ3)∩dom(θ ′′3) = /0 and fv(ran(θ3))⊆ fv(θ ′3θ
′
2θ
′
1Γ
′) . (13)

The left-hand equation gives
T = θ

′′
3 θ3T ′3 . (14)

Hence by definition of closure

T .g closeθ ′3θ ′2θ ′1Γ ′(θ3T ′3) . (15)

and further using the right-hand side of equation (13) and Lemma 17

T .g
θ3closeθ ′3θ ′2θ ′1Γ ′(T

′
3) , (16)

Finally, with the generalization Lemma 21

S .g
θ3closeθ ′3θ ′2θ ′1Γ ′(T

′
3) , (17)

as required. ut

18

3.5.2 Soundness As usual, soundness is basically straightforward, whereas com-
pleteness later requires a careful formulation of the relationship between specification
and algorithm to allow an inductive proof.

The next lemma captures a straightforward property of the type and effect system,
namely preservation of typing under substitution.

Lemma 27 (Substitution). If Γ ` e : S :: ϕ , then θΓ ` e : θS :: θϕ for all θ .

Proof. By straightforward induction on the the derivation. ut

Lemma 28 (Soundness). If Γ `A e : T :: ϕ,θ , then θΓ ` e : T :: ϕ .

Proof. Assume Γ `A e : T :: ϕ,θ and proceed by induction on the derivation by the
rules of Table 10.
Case: TA-VAR: Γ `A x : INSTΓ (S) :: ε, id
where Γ (x) = S = ∀~ρ.T . The instance INSTΓ (S) uses fresh variables. Thus, wlog.,
INSTΓ (S) = θ ′T where dom(θ ′) =~ρ and the case follows by T-VAR and an appropriate
number of applications of T-INST:

Γ (x) = S
T-VAR

Γ ` x : S :: ε S = ∀~ρ.T ~ρ = dom(θ ′) INSTΓ (S) = θ
′T

T-INST∗
Γ ` x : INSTΓ (S) :: ε

Case: TA-PREF and TA-LREF
Both cases are trivial, with θ = id.
Case: TA-ABS:
We are given

~T1 = d~TeA Γ ,~x:~T1 `A e : T2 :: ϕ,θ ~ρ = fv(~T1)

Γ `A fn~x:~T .e : (θ~T1)
ϕ−→ T2 :: ε,θ \~ρ

and we need to prove (θ \~ρ)Γ ` fn x:T.e : (θ~T1)
ϕ−→ T2 :: ε . Since the ~ρ are fresh,

(θ \~ρ)Γ = θΓ . So by induction on the second premise, we conclude

bθ~T1c= ~T θ(Γ ,x:~T1) ` e : T2 :: ϕ
T-ABS

θΓ ` fn x:T.e : (θ~T1)
ϕ−→ T2 :: ε

Case: TA-ABSrec:
We are given

~T ′1 = d~T1eA T ′2 = dT2eA Γ , f :~T ′1
X−→ T ′2 ,x:~T ′1 `A e : T :: ϕ,θ

X fresh bTc= T2 ~ρ = fv(~T ′1 −→ T ′2) θ1 = U (T,θT ′2)

Γ `A fun f :~T1 −→ T2.x:~T1.e : (θ1θ~T ′1)
θ1(recX .ϕ)−−−−−−→ (θ1θT ′2) :: ε, θ1 ◦θ \~ρ

and need to prove (θ1θ \~ρ)Γ ` fun f :~T1 −→ T2.x:~T1.e : (θ1θ~T ′1)
θ1(recX .ϕ)−−−−−−→ (θ1θT ′2) :: ε .

Since the variables ~ρ are fresh, θ \~ρΓ = θΓ . Induction on the typing subgoal yields

19

θ(Γ , f :~T ′1
X−→ T ′2 ,x:~T ′1) ` e : T :: ϕ . The substitution Lemma 27 and using θ1T = θ1θT ′2

—θ1 is a unifier of T and θT ′2— further gives θ1θΓ , f :θ1θ~T ′1
θ1θX−−−→ θ1θT ′2 ,x:θ1θ~T ′1 `

e : θ1θT ′2 :: θ1ϕ , and we can conclude with T-ABSrec, and using θ \~ρ Γ = Γ :

θ1θΓ , f :θ1θ~T ′1
θ1θX−−−→ θ1θT ′2 ,x:θ1θ~T ′1 ` e : θ1θT ′2 :: θ1ϕ

T-ABSrec

θ1θΓ ` fun f :~T1 −→ T2.x:~T1.e : (θ1θ~T ′1)
θ1(recX .ϕ)−−−−−−→ (θ1θT ′2) :: ε

Case: TA-APP:
We are given

Γ `A v1 : ~T ′2
ϕ−→ T ′ :: ε, id Γ `A v2 : ~T2,ε, id θ = U (~T ′2 , ~T2)

Γ `A v1 v2 : θT ′ :: θϕ,θ

and by induction on the first premise we get

Γ ` v1 : ~T2
′ ϕ−→ T ′ :: ε .

which implies with the substitution Lemma 27 θΓ ` v1 : θ(~T2
′ ϕ−→ T ′) :: ε . Using induc-

tion and the substitution lemma on the second premise gives θΓ ` v2 : θ~T2 :: ε , and the
case follows by rule T-APP:

θΓ ` v1 : θ(~T ′2
ϕ−→ T ′) :: ε θΓ ` v2 : θ~T2 :: ε θ~T ′2 = θ~T2

θΓ ` v1v2 : θT ′ :: θϕ

Case: TA-COND:
We are given

Γ `A v : Bool:: ε, id Γ `A e1 : T1 :: ϕ1,θ1 θ1Γ `A e2 : T2 :: ϕ2,θ2
θ3 = U (θ2T1,T2) θ = θ3 ◦θ2 ◦θ1

Γ `A if v then e1 else e2 : θ3θ2T1 ∨ θ3T2 :: θ3θ2ϕ1 +θ3ϕ2, θ

Induction on the first three premises yields

Γ ` v : Bool:: ε, θ1Γ ` e1 :: T1,ϕ1, and θ2θ1Γ ` e2 : T2 :: ϕ2 ,

and further with the help of the substitution Lemma 27

θΓ ` v : Bool:: ε, θΓ ` e1 : θ3θ2T1 :: θ3θ2ϕ1, and θΓ ` e2 : θ3T2 :: θ3ϕ2 .

Letting T = θ3θ2T1 ∨ θ3T2 and abbreviating ϕ = θ3(θ2ϕ1 +ϕ2) we conclude the case
by subsumption and rule T-COND:

θΓ ` v : Bool:: ε

θ3θ2T1 ≤ T θ3θ2ϕ1 ≤ ϕ

θΓ ` e1 :: θ3θ2T1,θ3θ2ϕ1

θΓ `A e1 : T :: ϕ

θ3T2 ≤ T θ3ϕ2 ≤ ϕ

θΓ ` e2 : θ3T2 :: θ3ϕ2

θΓ ` e2 : T :: ϕ

θΓ ` if v then e1 else e2 : T :: ϕ

20

Case: TA-LET:
We are given

Γ `A e1 : T ′1 :: ϕ1,θ1 S1 = closeθ1Γ (T ′1) bS1c= T1 θ1Γ ,x:S1 `A e2 : T2 :: ϕ2,θ2

Γ `A let x:T1 = e1 in e2 : T2 :: θ2ϕ1;ϕ2,θ2 ◦θ1

where S1 = ∀~ρ.T ′1 for~ρ = fv(T ′1)\ fv(θ1Γ). Induction on the first subgoal and a number
of instances of the generalization rule T-GEN from Table 8 gives θ1Γ ` e1 : S1 :: ϕ1,
and specializing with the substitution Lemma 27 gives θ2θ1Γ ` e1 : θ2S1 :: θ2ϕ1 . The
second subgoal bS1c= T1 implies bθ2S1c= T1. By induction on the right-most subgoal,
we have θ2(θ1Γ ,x:S1) ` e2 : T2 :: ϕ2. So by T-LET,

θ2θ1Γ ` e1 : θ2S1 :: θ2ϕ1 bθ2S1c= T1 θ2θ1Γ ,x:θ2S1 ` e2 : T2 :: ϕ2

θ2θ1Γ ` let x:T1 = e1 in e2 : T2 :: θ2ϕ1;ϕ2

which concludes the case.

Case: TA-SPAWN: Γ `A spawn e : Thread ::spawn ϕ,θ
By straightforward induction on the premise of TA-SPAWN and using T-SPAWN.

Case: TA-LOCK:
We are given

Γ `A v :Lr:: ϕ,θ
TA-LOCK

Γ `A v. lock:Lr:: Lr.lock,θ

By induction, θΓ ` v :Lr:: ϕ , whence the result follows by T-LOCK.

Case: TA-UNLOCK: Γ `A v. unlock:Lr:: Lr.unlock,θ
Analogously to TA-LOCK. ut

3.5.3 Completeness For completeness in the inverse direction we need to prove in
principle that all typing judgments derivable by the specification are found by the al-
gorithm as well. As the algorithm is deterministic whereas the specification is not, not
all typings are literally given by the algorithm. Instead, and as usual, the algorithm
gives back a type and effect that represents all possible typings from the specification.
In our setting there are two sources of non-determinism in the specification. Weaken-
ing the result by subsumption, and the non-determinism inherent in the specialization
and generalization rules. For the proof of completeness, we tackle both sources of non-
determinism separately, eliminating subtyping/sub-effecting first.

As intermediate step, we remove the subsumption rule from Table 8 and “build in”
the weakening by subsumption into those rules where it is needed, namely for applica-
tion and for conditions. More precisely, apart from removing subsumption, we replace
rule T-APP and T-COND by the versions of Table 11.

The following is a simple property of the intermediate system, needed in the mini-
mal typing Lemma 30.

Lemma 29 (Strengthening). Given Γ ,x:S1 `2 e : S2 :: ϕ , where Γ ` S′1 ≤ S1 for some
S′1, then Γ ,x:S′1 `2 e : S′2 :: ϕ ′ for some S′2 and ϕ ′ where S′2 ≤ S2 and ϕ ′ ≤ ϕ .

21

Γ `2 v : Bool:: ε Γ `2 e1 : T1 :: ϕ1 Γ `2 e2 : T2 :: ϕ2
T-COND2

Γ `2 if v then e1 else e2 : T1 ∨ T2 :: ϕ1 +ϕ2

Γ `2 v1 : T2
ϕ−→ T :: ε Γ `2 v2 : T ′2 :: ε Γ ` T ′2 ≤ T2

T-APP2

Γ `2 v1 v2 : T :: ϕ

Table 11. Intermediate type and effect system

Proof. Proceed by induction on the derivation of the typing judgement. The case of
T-VAR is immediate, and likewise the ones for T-PREF and T-LREF. The case for
T-SPAWN follows by induction, the one for T-NEWL is immediate. The case for T-LET
follows by induction and with the help of SE-SEQ. Similarly, rules T-ABS and T-ABSrec
follow straightforwardly by induction. The cases for T-LOCK and T-UNLOCK follow
by induction and using SE-SEQ. Also T-GEN follows by induction and with the help
of S-ALL.
Case: T-INST
We are given

Γ ,x:S1 ` e : ∀ρ.S2 :: ϕ θ = [ρ → r]
T-INST

Γ ,x:S1 ` e : θS2 :: ϕ

By induction Γ ,x:S′1 ` e : S′ :: ϕ ′ where ϕ ′ ≤ ϕ and S′ ≤ ∀ρ.S2. The latter implies
S′ = ∀ρ.S′2 with S′2 ≤ S2 by Lemma 4(2), and the result follows by preservation of ≤
under substitution (Lemma 3(1).
Case: T-COND
We are given

Γ ,x:T `2 v : Bool Γ ,x:T `2 e1 : T1 :: ϕ1 Γ ,x:T `2 e2 : T2 :: ϕ2

Γ ,x:T `2 if v then e1 else e2 : T1 ∨ T2 :: ϕ1 +ϕ2

By induction Γ ,x:T ′ `2 e1 : T ′1 :: ϕ ′1 and Γ ,x:T ′ `2 e2 : T ′2 :: ϕ ′2, where T ′1 ≤ T1, T ′2 ≤ T2,
and further ϕ ′1 ≤ ϕ ′1 and ϕ ′2 ≤ ϕ2. By Lemma 2, T ′1 ∨ T ′2 ≤ T1 ∨ T2. Furthermore, by
rule SE-CHOICE2 ϕ ′1 +ϕ ′2 ≤ ϕ2 +ϕ2, from which the result follows.
Case: T-APP
from Table 11 follows by induction. ut

Lemma 30 (Minimal typing). If Γ ` e : S1 :: ϕ1, then Γ `2 e : S2 :: ϕ2 where S2 ≤ S1
and ϕ2 ≤ ϕ1.

Proof. By induction on derivations with the rules of `. from Table 8. The cases for
T-VAR, T-PREF, T-LREF, and T-NEWL are immediate by reflexivity of ≤.
Case: T-ABS
We are given

b~Tc= ~T1 Γ ,~x:~T ` e : T2 :: ϕ

Γ ` fn~x:~T1.e : ~T
ϕ−→ T2 :: ε

22

By induction we get Γ ,~x:~T `2 e : T ′2 :: ϕ ′ with T ′2 ≤ T2 and ϕ ′ ≤ ϕ . Since our restriction

to first-order, T ′2 = T2. That implies ~T
ϕ ′−→ T2 ≤ ~T

ϕ−→ T2 by rule S-ARROW, and the
result follows by T-ABS.
Case: T-ABSrec
We are given

b~T ′1c= ~T1 bT ′2c= T2 Γ , f :~T ′1
X−→ T ′2 ,~x:~T ′1 ` e : T ′2 :: ϕ

Γ `fun f :~T1 −→ T2.~x:~T1.e : ~T ′1
recX .ϕ−−−−→ T ′2 :: ε

By induction, Γ , f :~T ′1
X−→ T ′2 ,~x:~T ′1 ` e : T ′′2 :: ϕ ′ where T ′′2 ≤ T ′2 and ϕ ′ ≤ ϕ . Under

the restriction to first-order, T ′′2 = T ′2 and hence ~T1
recX .ϕ−−−−→ T2 ≤ ~T ′1

recX .ϕ ′−−−−→ T2 by rule
S-ARROW, and the case follows by T-ABSrec.
Case: T-APP
We are given

Γ ` v1 : ~T2
ϕ−→ T :: ε Γ `~v2 : ~T2 :: ε

Γ ` v1~v2 : T :: ϕ

Induction of the first subgoal gives Γ `2 v1 : T ′1 :: ϕ ′1 where T ′1 ≤ ~T2
ϕ−→ T and ϕ ′1 ≤ ε .

By Lemma 4(1) and minimality of ε from Lemma 5, this implies T ′1 = ~T2
ϕ ′−→ T , where

ϕ ′ ≤ ϕ and ϕ ′1 ≡ ε . By induction on the second subgoal, Γ `2~v2 : ~T ′2 :: ϕ ′2 with ~T ′2 ≤ ~T2
and, again with Lemma 5, ϕ ′2 ≡ ε . Hence, by T-APP2 of Table 11

Γ `2 v1 : ~T2
ϕ ′−→ T :: ε Γ `2 ~v2 : ~T ′2 T ′2 ≤ T2 :: ε

Γ `2 v1 ~v2 : T :: ϕ
′

which concludes the case.
Case: T-COND
We are given

Γ ` v : Bool:: ε Γ ` e1 : T :: ϕ Γ ` e2 : T :: ϕ

Γ ` if v then e1 else e2 : T :: ϕ

By induction, we have Γ `2 v : Bool, Γ `2 e1 : T1 :: ϕ1 and Γ `2 e2 : T2 :: ϕ2, where
T1 ≤ T , T2 ≤ T , ϕ1 ≤ ϕ , and ϕ2 ≤ ϕ . Hence by Lemma 1, T1 ∨ T2 ≤ T and ϕ1 +ϕ2 ≤ ϕ

and the case follows by T-COND2.
Case: T-LET
We are given

Γ ` e1 : S1 :: ϕ1 bS1c= T1 Γ ,x:S1 ` e2 : T2 :: ϕ2

Γ ` let x:T1 = e1 in e2 : T2 :: ϕ1;ϕ2

By induction, Γ `2 e1 : S′1 :: ϕ ′1 and

Γ ,x:S1 `2 e2 : T ′2 :: ϕ
′
2 , (18)

23

where S′1 ≤ S1, T ′2 ≤ T2, ϕ ′1 ≤ ϕ1, and ϕ ′2 ≤ ϕ2. The equality bS1c = T1 and S′1 ≤ S1
implies bS′1c= T . Furthermore, by strengthening from Lemma 29, equation (18) implies
that

Γ ,x:S′1 `2 e2 : T ′′2 :: ϕ
′′
2 , (19)

for some T ′′2 and ϕ ′′2 where T ′′2 ≤ T ′2 and ϕ ′′2 ≤ ϕ ′2. Hence by transitivity T ′′2 ≤ T2 and
ϕ ′′2 ≤ ϕ2, and by T-LET of Table 11 we get

Γ `2 e1 : S′1 :: ϕ
′
1 bS′1c= T1 Γ ,x:S′1 `2 e2 : T ′′2 :: ϕ

′′
2

Γ `2let x:T1 = e1 in e2 : T ′′2 :: ϕ
′
1;ϕ

′′
2

Rule SE-SEQ gives ϕ ′1;ϕ ′′2 ≤ ϕ1;ϕ2, as required.
Case: T-SPAWN
We are given

Γ ` e : S :: ϕ

Γ `spawn e :Thread::spawn ϕ

By induction, we get Γ `2 e : S′ :: ϕ ′, where S′ ≤ S and ϕ ′ ≤ ϕ . Hence the result follows
by T-SPAWN and the fact that ϕ ′ ≤ ϕ implies spawn ϕ ′ ≤ spawn ϕ by SE-SPAWN.
Case: T-LOCK and T-UNLOCK
By induction and the rules for ≤ concerning sequential composition.
Case: T-SUB
By straightforward induction and transitivity.
Case: T-GEN
We are given

Γ ` e : S :: ϕ ρ /∈ fvT (Γ) ρ ∈ fvT (S)

Γ ` e : ∀ρ.S :: ϕ

We get Γ `2 e : S′ :: ϕ ′ by induction where S′ ≤ S and ϕ ′ ≤ ϕ . Hence Γ `2 e : ∀ρ.S′ :: ϕ ′

by rule T-GEN; note that by Lemma 6 ρ ∈ fvT (S) and S′ ≤ S implies that also ρ ∈
fvT (S′). Finally ∀ρ.S′ ≤ ∀ρ.S by S-ALL.
Case: T-INST
We are given

Γ ` e : ∀ρ.S1 :: ϕ ρ = dom(θ)

Γ ` e : θS1 :: ϕ

and by induction Γ `2 e : S2 :: ϕ ′ where S2 ≤ ∀ρ.S1 and ϕ ′ ≤ ϕ . By Lemma 4(2),
S2 = ∀ρ.S′2 with S′2 ≤ S1. Hence the case follows by Lemma 3, the instantiation rule
T-INST and S-ALL. ut

The second step in the completeness proofs gets rid of the non-determinism of the
instantiation and generalization rules, by generalizing functions when they are intro-
duced and specializing them when they are used, relying on unification.

Definition 6 (Well-formed context). Let fvB(Γ) denote all free variables fvT (T) for
all bindings of the form x:T in Γ were T is not of the form ∀~ρ.~T1→ T2. Well-formedness
of a context Γ is defined inductively as follows: the empty context is well-formed. For
Γ = Γ ′,x:∀~ρ.~T1

ϕ−→ T2, Γ is well-formed if Γ ′ is well-formed and if

24

1. fvT (T2)⊆ fvT (~T1)∪ fvB(Γ)
2. fv(ϕ)⊆ fvT (~T1)∪ fvB(Γ).

If Γ = Γ ′,x:T otherwise, Γ is well-formed if Γ ′ is well-formed.

Lemma 31 (Free variables). Assume Γ is ok, and Γ ` e : S :: ϕ ′ by the rules of the
type system of Table 8. Then the following holds:

1. (a) If S = ∀~ρ.~T1
ϕ−→ T2, then

i. fvT (T2)⊆ fvT (~T1)∪ fvB(Γ)
ii. fv(ϕ)⊆ fvT (~T1)∪ fvB(Γ)

(b) Otherwise, fvT (T)⊆ fvB(Γ).
2. fv(ϕ ′)⊆ fvB(Γ).

The same is true for judgments derived in the intermediate system of Table 11.

Proof. By induction on the derivation.

Case: T-VAR
We are given

Γ (x) = S

Γ ` x : S :: ε

Part 1a follows by well-formedness of Γ . Part 2 for the effects is trivial.

Case: T-PREF, T-LREF, and T-NEWL
Trivial, since no variables are involved.

Case: T-COND
All parts by straightforward induction.

Case: T-LET
We are given

Γ ` e1 : S1 :: ϕ1 bS1c= T1 Γ ,x:S1 ` e2 : T2 :: ϕ2

Γ ` let x:T1 = e1 in e2 : T2 :: ϕ1;ϕ2

Induction on the first subgoal gives: if S1 = ∀~ρ.~T
ϕ−→ T ′ for some ~T , T ′ and ϕ , then

fvT (T ′)⊆ fvT (~T)∪ fvB(Γ), and fv(ϕ)⊆ fvT (~T)∪ fvB(Γ) (20)

otherwise,
fvT (S1)⊆ fvB(Γ) . (21)

In the case of 1a, that is, in case T2 = ∀~ρ ′.~T ′2
ϕ ′−→ T ′′2 for some ~T ′2 , T ′′2 , and ϕ ′. We

have to show fvT (T ′′2) ⊆ fvT (~T ′2)∪ fvB(Γ) and fv(ϕ ′) ⊆ fvT (~T2)∪ fvB(Γ). Induction on
the second subgoal gives

fvT (T ′′2)⊆ fvT (~T ′2)∪ fvB(Γ ,x:S1) and fv(ϕ ′)⊆ fvT (~T ′2)∪ fvB(Γ ,x:S1) . (22)

25

If S1 = ∀~ρ.~T
ϕ−→ T ′, fvB(Γ ,x:S1) = fvB(Γ) (as free variables of the type scheme are

ignored in fvB); otherwise, equation (21) implies fvB(Γ ,x:S1) = fvB(Γ). Therefore, we
have that

fvB(Γ ,x:S1) = fvB(Γ) (23)

This together with equation (22) covers part 1a.
In case of part 1b, i.e., where T2 is a type scheme/arrow type, we have to show

fvT (T2) ⊆ fvB(Γ). Induction on the second subgoals gives fvT (T2) ⊆ fvB(Γ ,x:S1), and
equation (23) implies fvT (T2)⊆ fvB(Γ), as required.

For part 2 for the effects, we have to show fv(ϕ1;ϕ2) ⊆ fvB(Γ). Induction on the
left- and right-most subgoals gives fv(ϕ1) ⊆ fvB(Γ), resp. fv(ϕ2) ⊆ fvB(Γ ,x:S1). By
equation (23), the latter implies fv(ϕ2)⊆ fvB(Γ), which concludes the case.
Case: T-ABS
We are given

b~Tc= ~T1 Γ ,~x:~T ` e : T2 :: ϕ

Γ ` fn~x:~T1.e : ~T
ϕ−→ T2 :: ε

Under the restriction to first-order, neither ~T nor T2 are arrow type schemes. Under this
restriction, induction on the right premise gives

fvT (T2)⊆ fvB(Γ ,x:~T) and fv(ϕ)⊆ fvB(Γ ,x:~T) . (24)

Part 1a follows directly from equation (24), while part 2 for the effects is trivially true.
Case: T-ABSrec
We are given that

b~T ′1c= ~T1 bT ′2c= T2 Γ , f :~T ′1
X−→ T ′2 ,~x:~T ′1 ` e : T ′2 :: ϕ

Γ ` fun f :~T1 −→ T2.~x:~T1.e : ~T ′1
recX .ϕ−−−−→ T ′2 :: ε

Under the restriction to first-order, neither ~T nor T2 are arrow type schemes. By induc-
tion, we get

fvT (T ′2)⊆ fvB(Γ , f :~T ′1
X−→ T ′2 ,~x:~T ′1) and fv(ϕ)⊆ fvB(Γ , f :~T ′1

X−→ T ′2 ,~x:~T ′1) (25)

For part 1a, fvT (T ′2) ⊆ fvT (~T1)∪ fvB(Γ) follows directly from equation (25) (note that
fvB ignores free variables in function types in Γ). Part 2 for the effects is trivially true.
Case: T-APP
We are given

Γ ` v1 : ~T2
ϕ−→ T :: ε Γ `~v2 : ~T2 :: ε

Γ ` v1 ~v2 : T :: ϕ

Under the the restriction to first-order, we need only to show that fvT (T) ⊆ fvB(Γ)
in part 1b. Induction on the first subgoal gives fvT (T)⊆ fvT (~T2)∪ fvB(Γ), and fv(ϕ)⊆
fvT (~T2)∪ fvB(Γ). Furthermore, induction on the second subgoal gives fvT (~T2)⊆ fvB(Γ).
Therefore, fvT (T)⊆ fvT (~T2)∪ fvB(Γ) = fvB(Γ), as required.

For part 2, we get from part 1 that fv(ϕ)⊆ fvT (~T2)∪ fvB(Γ) and fvT (~T2)⊆ fvB(Γ).
Thus, fv(ϕ)⊆ fvB(Γ), which concludes the case.

26

Case: T-SPAWN
Part 1 for the type is trivial as no variables are involved, and part 2 follows by straight-
forward induction.
Case: T-LOCK
We are given

Γ ` v : Lr:: ϕ

Γ ` v. lock: Lr:: ϕ;Lr.lock

Part 1 for the type follows by straightforward induction. For part 2, induction yields
fvT (Lr) ⊆ fvB(Γ) which implies fv(Lr. lock) ⊆ fvB(Γ). This together with fv(ϕ) ⊆
fvB(Γ) concludes the case. The case of T-UNLOCK works analogously.
Case: T-SUB
We are given t

Γ ` e : S′ :: ϕ
′
1 Γ ` S′ ≤ S Γ ` ϕ

′
1 ≤ ϕ1

Γ ` e : S :: ϕ1

Induction on the first subgoal gives: if S′ = ∀~ρ.~T1
ϕ ′2−→ T2 for some T1, T2, and ϕ ′2, then

fvT (T2)⊆ fvT (~T1)∪ fvB(Γ), and fv(ϕ ′2)⊆ fvT (~T1)∪ fvB(Γ) ; (26)

otherwise,
fvT (S′)⊆ fvB(Γ) (27)

For part 1a, it’s easy to see that S ≥ S′ implies S = ∀~ρ ′.~T1
ϕ2−→ T2 with Γ ` ϕ ′2 ≤ ϕ2.

Then, we get fvT (T2)⊆ fvT (T1)∪ fvB(Γ) directly from equation (26) for the first part of
1a. For the second part, fv(ϕ ′2)⊆ fvT (T1)∪ fvB(Γ) from equation (26), and Γ ` ϕ ′2 ≤ ϕ2
implies by Lemma 7(2) that fv(ϕ2)⊆ fvT (T1)∪ fvB(Γ), as required.

For part 1b, by Lemma 6, fvT (S′) = fvT (S), this together with equation (27) implies
fvT (S)⊆ fvB(Γ), as required.

Part 2 for the effects, fv(ϕ ′1) ⊆ fvB(Γ) from the induction and the second subgoal
Γ ` ϕ ′1 ≤ ϕ1 implies fv(ϕ1)⊆ fvB(Γ) by the first part of Lemma 7, which concludes the
case.
Case: T-GEN
We are given

Γ ` e : S :: ϕ ρ
′ /∈ fvT (Γ) ρ

′ ∈ fvT (S)

Γ ` e : ∀ρ ′.S :: ϕ

Induction on the first subgoal gives: if S = ∀~ρ.~T1
ϕ ′−→ T2 for some T1, T2 and ϕ ′, then

fvT (T2)⊆ fvT (~T1)∪ fvB(Γ), and fv(ϕ ′)⊆ fvT (~T1)∪ fvB(Γ) ; (28)

otherwise,
fvT (S)⊆ fvB(Γ) . (29)

For part 1a, we have to show fvT (T2)⊆ fvT (~T1)∪ fvB(Γ) and fv(ϕ ′)⊆ fvT (~T1)∪ fvB(Γ)

for Γ ` e : ∀ρ ′ ∀~ρ.~T1
ϕ ′−→ T2, which follows directly from the induction.

By equation (29), part 1b does not apply.
Part 2 for the effects follows by straightforward induction.

27

Case: T-INST
In this case,

Γ ` e : ∀ρ ′.S :: ϕ ρ
′ = dom(θ)

Γ ` e : θS :: ϕ

In this case, S = ∀~ρ.~T1
ϕ ′−→ T2 for some ~T1, T2, and ϕ ′. Induction on the left subgoal

gives

fvT (T2)⊆ fvT (~T1)∪ fvB(Γ) , and fvT (ϕ ′)⊆ fvT (~T1)∪ fvB(Γ) . (30)

Furthermore, θS = ∀~ρ.θ(~T1
ϕ ′−→ T2) and since the substitution affects only ρ ′, i.e.. ρ ′ =

dom(θ), equation (30) yields fvT (θT2)⊆ fvT (θ~T1)∪ fvB(Γ), and fvT (θϕ ′)⊆ fvT (θ~T1)∪
fvB(Γ), which concludes the case.

Part 2 for the effects follows by straightforward induction. ut

Note that given Γ ` e : T , the inclusion fv(T)⊆ fv(Γ) does not hold: Free variables
in T but not in Γ are the “fresh” ones rule T-GEN can quantify over. They are also the
ones that are quantified over in the closure of a type (cf. Definition 3).

Let’s write `′2 for derivations in a restricted system in which derivations do not end
in a last step by using instantiation or generalization.

Lemma 32 (Transfer). If `A is complete wrt. `′2 (in the sense of Lemma 34), then so
is it wrt. `2.

Proof. We are given completeness of `A wrt. the restricted derivations in `′2. Assume
Γ `′2 e : T and further Γ . Γ ′, i.e., Γ ′ is a generalization of Γ , resp. Γ is a non-generic
instance of Γ ′. Proceed by induction on the number n of instances of rule T-INST and
T-GEN at the end of the derivation. The base case for n = 0 is immediate. So assume
n+1. There are two cases, depending on which rule has been used in the last step.

Subcase: T-INST
We are given that

Γ `′2 e : ∀ρ.S :: ϕ ρ = dom(θ)
T-INST

Γ `2 e : θS :: ϕ

i.e., θS .g ∀ρ.S. By induction we get

Γ
′ `A e : T ′ :: ϕ

′,θ ′1 where Γ .θ1 θ
′
1Γ
′, ∀ρ.S .g

θ1closeθ ′Γ ′(T
′), and ϕ .θ1 ϕ

′,

for some θ1. Transitivity of .g gives θS .g θ1closeθ ′Γ ′(T ′) which concludes the case.

Subcase: T-GEN
By T-GEN, we are given that

Γ `′2 e : S :: ϕ ρ ∈ fvT (S) ρ /∈ fvT (Γ)
T-GEN

Γ `2 e : ∀ρ.S :: ϕ

28

By induction, we get Γ ′ `A e : T ′ :: ϕ ′,θ ′ where Γ .θ θ ′Γ ′ for some θ . Furthermore, we
have S .g θ closeθ ′Γ ′(T ′) and ϕ .θ ϕ ′. By Lemma 19, fv(closeθ ′Γ ′(T ′)) ⊆ fv(θ ′Γ ′),
and therefore

fv(θ closeθ ′Γ ′(T
′))⊆ fv(θθ

′
Γ
′) = fv(Γ) (31)

by Lemma 13 and the induction hypothesis Γ = θθ ′Γ ′. This implies ρ /∈ fv(θ closeθ ′Γ ′(T ′))
since ρ /∈ fv(Γ). This together with S .g θ closeθ ′Γ ′(T ′) and the generalization Lemma
21 yields ∀ρ.S .g θ closeθ ′Γ ′(T ′), as required. The rest of the conditions for complete-
ness are covered directly by the induction hypothesis, which concludes the case. ut

Lemma 33 (Weakening). If Γ ,x:S1 `2 e : S2 :: ϕ and S1 .g S′1, then Γ ,x:S′1 `2 e : S2 ::
ϕ .

Proof. In the derivation of Γ ,x:S1 `2 e : S2 :: ϕ , instead of using T-VAR for x:S1, we
replace it with x:S′1 followed by T-INST, and therefore Γ ,x:S′1 `2 e : S2 :: ϕ , as required.

ut

Lemma 34 (Completeness). If Γ . Γ ′ and Γ `′2 e : S :: ϕ , then

1. Γ ′ `A e : T ′ :: ϕ ′,θ ′

2. There exists a θ , s.t.
(a) Γ .θ θ ′Γ ′

(b) S .g θ closeθ ′Γ ′(T ′)
(c) ϕ .θ ϕ ′.

Proof. Assume Γ . Γ ′ and Γ `′2 e : T :: ϕ . The proof then proceeds by induction on the
structure of e. Note that since the derivation in `′2 does not end by T-INST or T-GEN,
the syntactic form of e determines the derivation rule used in the last step.
Case: e = x
With T-VAR as the only rule to justify the typing judgment, we know ϕ = ε and Γ (x) =
S. We are given that Γ . Γ ′, i.e. Γ = θ̃Γ ′ for some θ̃ . Thus, Γ ′(x) = S′ with T = θ̃S′.
Hence

Γ
′(x) = S′

TA-VAR
Γ
′ `A e : INSTΓ ′(S

′), :: ε, id

Wlog. closeΓ ′(INSTΓ ′(S′)) = S′, thus S = θ̃ closeΓ ′(INSTΓ ′(S′)). Setting θ = θ̃ , Part
(2a) follows using θ ′ = id. Part (2b) S .g θ̃ closeΓ ′(INSTΓ ′(S′)) follows by reflexivity
of .g, and part (2c) is immediate.
Case: e = lr

Straightforward.
Case: e = fn~x:~T1.t
In this case

b~Tc= ~T1 Γ ,~x:~T `2 t : T2 :: ϕ
T-ABS

Γ `′2 fn~x:~T1.t : ~T
ϕ−→ T2 :: ε

Let ~T ′ = d~T1eA, which implies ~T . ~T ′ by Lemma 22. Since Γ . Γ ′ the variables in ~T ′

are fresh, we have Γ ,x:~T . Γ ′,x:~T ′. Induction on t gives Γ ′,x:~T ′ `A t : T ′2 :: ϕ ′,θ ′ and
in addition,

Γ ,x:~T .θ θ
′
Γ
′,x:θ ′~T ′, T2 .g

θ closeθ ′Γ ′(T
′

2), and ϕ .θ ϕ
′ (32)

29

for some substitution θ . In our first-order setting, the second part of equation (32) can
be replaced by the simpler T2 = θT ′2 . By rule TA-ABS,

~T ′ = d~T1eA Γ
′,x:~T ′ `A t : T ′2 :: ϕ

′,θ ′ ~ρ = fv(~T ′)

Γ
′ `A fn~x:~T1.t : (θ ′~T ′)

ϕ ′−→ T ′2 :: ε,θ ′ \~ρ

From equation (32), Γ .θ θ ′Γ ′, and since ~ρ are fresh, Γ .θ (θ ′ \~ρ)Γ ′, covering part
(2a). Equation (32) furthermore gives ~T = θθ ′~T ′, and further T2 = θT ′2 and ϕ = θϕ ′.
Hence,

~T
ϕ−→ T2 = θ(θ ′~T ′

ϕ ′−→ T ′2) . (33)

By the closure Lemma 12, θ ′~T ′
ϕ ′−→ T ′2 .g closeθ ′Γ ′(θ ′~T ′

ϕ ′−→ T ′2), and further with the

substitution Lemma 20 θ(θ ′~T ′
ϕ ′−→ T ′2) .g θ closeθ ′Γ ′(θ ′~T ′

ϕ ′−→ T ′2), and therefore equa-

tion (33) yields ~T
ϕ−→ T2 .g θ closeθ ′Γ ′(θ ′~T ′

ϕ ′−→ T ′2), as required in part 2b. Part 2c is
immediate.
Case: e = fun f :T.~x:~T .t
In this case

b~T1c= ~T bT2c= T ′ Γ , f :~T1
X−→ T2,~x:~T1 `2 t : T2 :: ϕ

T-ABSrec

Γ `′2 fun f :~T −→ T ′.~x:~T .t : ~T1
recX .ϕ−−−−→ T2 :: ε

Let ~T ′1 = d~TeA and T ′2 = dT ′eA, which implies with Lemma 22 ~T1 . ~T ′1 and T2 . T ′2 ,

and therefore further (since the introduced variables are fresh) Γ , f :~T1
X−→ T2,x:~T1 .

Γ ′, f :~T ′1
X−→ T ′2 ,x:~T ′1 . Induction on the subterm t gives

Γ
′, f :~T ′1

X−→ T ′2 ,x:~T ′1 `A t : T ′′2 :: ϕ
′,θ ′1

and in addition,

Γ , f :~T1
X−→ T2,~x:~T1 .θ1 θ

′
1(Γ

′, f :~T ′1
X−→ T ′2 ,x:~T ′1),

T2 .g
θ1 closeθ ′1Γ ′(T

′′
2), and ϕ .θ1 ϕ

′ (34)

for some θ1. Furthermore, the second inequation in (34) simplifies to T2 = θ1T ′′2 in
the first-order setting. Equation (34) and bT2c = T ′ implies bT ′′2 c = T ′. Then, by rule
TA-ABSrec,

~T ′1 = d~TeA T ′2 = dT ′eA Γ ′, f :~T ′1
X−→ T ′2 ,x:~T ′1 `A t : T ′′2 :: ϕ ′,θ ′1

X fresh bT ′′2 c= T ′ ~ρ = fv(~T ′1
X−→ T ′2) θ ′2 = U (T ′′2 ,θ ′1T ′2)

Γ
′ `A fun f :~T1 −→ T2.~x:~T1.t : θ

′
2θ
′
1
~T ′1

θ ′2(recX .ϕ ′)
−−−−−−−→ θ

′
2θ
′
1T ′2 :: ε,θ ′2 ◦θ

′
1 \~ρ

The first inequation in (34) further implies T2 = θ1θ ′1T ′2 . This together with T2 = θ1T ′′2
means that θ1 is unifier of θ ′1T ′2 and T ′′2 , and since θ ′2 is the most general one,

θ1 .θ2 θ
′
2 (35)

30

for some θ2. With ~ρ fresh, θ ′2θ ′1Γ ′ = (θ ′2θ ′1 \~ρ)Γ ′, which gives together with left-most
inequation of (34) Γ .θ2 (θ ′2θ ′1 \~ρ)Γ ′, as required in part 2a. Using (35), ϕ .θ1 ϕ ′ can
be re-written as ϕ .θ2 θ ′2ϕ ′ which implies recX .ϕ1 .θ2 θ ′2 recX .ϕ ′1. The first inequation
of (34) together with (35) gives further that ~T1 .θ2 θ ′2θ ′1~T

′
1 and T2 .θ2 θ ′2θ ′1T ′2 and thus

~T1
recX .ϕ−−−−→ T2 = θ2(θ ′2θ

′
1
~T ′1

θ ′2 recX .ϕ ′
−−−−−−→ θ

′
2θ
′
1T ′2) . (36)

Let T̃ = θ ′2θ ′1~T
′

1
θ ′2 recX .ϕ ′
−−−−−−→ θ ′2θ ′1T ′2 . By the closure Lemma 12, T̃ .g closeθ ′2θ ′1Γ ′(T̃) and

further with Lemma 20, θ2T̃ .g θ2 closeθ ′2θ ′1Γ ′(T̃). Then, θ ′2θ ′1Γ ′ = (θ ′2θ ′1 \~ρ)Γ ′ to-

gether with (36) gives ~T1
recX .ϕ−−−−→ T2 .g θ2close(θ ′2θ ′1 \~ρ)Γ ′(T̃), as required in part 2b. Part

2c is immediate.

Case: e = let x:T1 = e1 in t
In this case

Γ `2 e1 : S1 :: ϕ1 bS1c= T1 Γ ,x:S1 `2 t : T2 :: ϕ2
T-LET

Γ `′2 let x:T1 = e1 in t : T2 :: ϕ1;ϕ2

Induction on e1 gives Γ ′ `A e1 : T ′1 :: ϕ ′1,θ
′
1 and in addition we have

Γ .θ1 θ
′
1Γ
′, S1 .g

θ1 closeθ ′1Γ ′(T
′

1), and ϕ1 = θ1ϕ
′
1 (37)

for some θ1. With the left-most inequation of (37), we can rewrite the judgement of
the other subterm t as θ1θ ′1Γ ′,x:S1 `2 t : T2 :: ϕ2. By Lemma 33 and using the second
inequation of (37), this can be weakened to

θ1θ
′
1Γ
′,x:θ1S′1 `2 t : T2 :: ϕ2 (38)

where S′1 = closeθ ′1Γ ′(T ′1). Since θ1θ ′1Γ ′,x:θ1S′1 .θ1 θ ′1Γ ′,x:S′1, induction on the sub-
term t in equation (38) gives θ ′1Γ ′,x:S′1 `A t : T ′2 :: ϕ ′2,θ

′
2 where in addition

θ1(θ ′1Γ
′,x:S′1) .θ2 θ

′
2(θ
′
1Γ
′,x:S′1) , T2 .g

θ2 closeθ ′2θ ′1Γ ′(T
′

2) and ϕ2 = θ2ϕ
′
2 (39)

for some θ2. We have bS1c = T1, which together with second inequation (37) implies
bS′1c= T1. Then, by rule TA-LET,

Γ
′ `A e1 : T ′1 :: ϕ

′
1,θ
′
1 S′1 = closeθ ′1Γ ′(T

′
1) bS′1c= T1 θ

′
1Γ
′,x:S′1 `A t : T ′2 :: ϕ

′
2,θ
′
2

Γ
′ `A let x:T1 = e1 in t : T ′2 :: θ

′
1ϕ
′
1;ϕ

′
2,θ
′
2 ◦θ

′
1

From the left-most inequations of (37) and of (39), we get Γ = θ1θ ′1Γ ′ = θ2θ ′2θ ′1Γ ′

covering part 2a. T2 .g θ2 closeθ ′2θ ′1Γ ′(T ′2) follows directly from the induction hypoth-
esis in equation (39), covering 2b. Finally we have ϕ1 = θ1ϕ ′1 = θ2θ ′2ϕ ′1, which yields
ϕ1;ϕ2 = θ2(θ ′2ϕ ′1;ϕ ′2), covering part 2c, concluding the case.

31

Case: e = if v then e1 else e2
In this case, we are given

Γ `2 v : Bool :: ε Γ `2 e1 : T1 :: ϕ1 Γ `2 e2 : T2 :: ϕ2
T-COND2

Γ `′2 if v then e1 else e2 : T1 ∨ T2 :: ϕ1 +ϕ2

First note that the existence of T1 ∨ T2 implies that either T1 = T2 if T1 and T2 are no
type schemes. Otherwise, T1 = ∀~ρ.U1

ϕ1−→ U2 and T2 = ∀~ρ.U1
ϕ2−→ U2 and T1 ∨ T2 =

∀~ρ.U1
ϕ1+ϕ2−−−−→U2. Let’s concentrate on the first case, the second one works analogously,

remembering that unification on types does not take the annotations ϕ1 and ϕ2 into
account. So let’s set T = T1 ∨ T2 = T1 = T2. Induction on the first subterm v gives
Γ ′ `A v : Bool :: ε, id, and further Γ .θ Γ ′ for some θ . Induction on the second subterm
e1 gives Γ ′ `A e1 : T ′1 :: ϕ ′1,θ

′
1 and in addition

Γ .θ1 θ
′
1Γ
′, T1 .g

θ1 closeθ ′1Γ ′(T
′

1), and ϕ1 .θ1 ϕ
′
1 (40)

for some θ1. The left-most inequation (40) means Γ . θ ′1Γ ′ and furthermore the judg-
ment of the subterm e2 from the last premise can be rewritten as θ1θ ′1Γ ′ `2 e2 : T2 :: ϕ2.
Hence, induction on e2 gives θ ′1Γ ′ `A e2 : T ′2 :: ϕ ′2,θ

′
2, and further

Γ = θ1θ
′
1Γ
′ .θ2 θ

′
2θ
′
1Γ
′, T2 .g

θ2 closeθ ′2θ ′1Γ ′(T
′

2), and ϕ2 .θ2 ϕ
′
2 (41)

for some θ2. Then, by TA-COND

Γ ′ `A v : Bool:: ε, id Γ ′ `A e1 : T ′1 :: ϕ ′1,θ
′
1 θ ′1Γ ′ `A e2 : T ′2 :: ϕ ′2,θ

′
2

θ ′3 = U (θ ′2T ′1 ,T
′

2) T ′ = (θ ′3θ ′2T ′1 ∨ θ ′3T ′2)

Γ
′ `A if v then e1 else e2 : T ′ :: θ

′
3θ
′
2ϕ
′
1 +θ

′
3ϕ
′
2,θ
′
3 ◦θ

′
2 ◦θ

′
1

From equation (41), Γ = θ1θ ′1Γ ′ = θ2θ ′2θ ′1Γ ′, and since fv(T ′1)⊆ fv(θ ′1Γ ′), this implies
with Lemma 23

θ
′
1T ′1 = θ2θ

′
2T ′1 (42)

and furthermore we have
T2 = θ2T ′2 (43)

Hence θ2 is a (another) unifier of θ ′2T ′1 and T ′2 . Since θ ′3 is the most general one, θ2 .θ3
θ ′3 for some substitution θ3. This means Γ .θ3 θ ′3θ ′2θ ′1Γ ′, as required in part 2a.

The second conditions of the induction hypotheses from (40) and (41) together with
equation (42) cover the premises of Lemma 26, which gives T .g θ3closeθ ′3θ ′2θ ′1Γ ′(T ′3),
as required in part 2b.

For the effect, we have ϕ1 = θ3θ ′3θ ′2ϕ ′1 and ϕ2 = θ3θ ′3ϕ ′2. Therefore, ϕ1 + ϕ2 =
θ3(θ ′3θ ′2ϕ ′1 +θ ′3ϕ ′2), as required for part 2c.

Case: e = v~v
Analogously.

32

Case: e = spawn t
In this case,

Γ `2 t : S :: ϕ
T-SPAWN

Γ `′2 spawn t : Thread :: spawn ϕ

Induction on the well-typed subterm t gives Γ ′ `A t : T ′ :: ϕ ′,θ ′, and further

Γ .θ θ
′
Γ
′, T .g

θcloseθ ′Γ ′(T
′), and ϕ .θ ϕ

′

for some θ . Then, by rule TA-SPAWN,

Γ
′ `A t : T ′ :: ϕ

′,θ ′

TA-SPAWN
Γ
′ `A spawn t : Thread :: spawn ϕ

′,θ ′

The induction hypothesis ϕ .θ ϕ ′ implies spawn ϕ .θ spawn ϕ ′, which concludes the
case.

Case: e =newπ L
Straightforward.

Case: e = v. lock
In this case, we are given

Γ `2 v : Lr :: ϕ

Γ `′2 v. lock: Lr:: ϕ;Lr.lock

Induction on the subterm v gives Γ ′ `A v : Lr′ :: ϕ ′,θ ′ where ϕ ′ = ε and θ ′ = id by
TA-VAR. In addition,

Γ .θ Γ
′, and Lr.g

θ closeΓ ′(L
r′) (44)

for some substitution θ . With rule TA-LOCK, we get

Γ
′ `A v : Lr′ :: ε, id

Γ
′ `A v. lock : Lr′ :: Lr′.lock, id

Parts 2a and 2b are directly given by induction. For part 2c for the effects, the right
induction hypothesis of (44) means Lr= θ Lr′ , and therefore Lr.lock .θ Lr′.lock, as
required.

Case: e = v. unlock
Analogously. ut

4 Conclusion

We have presented an algorithmic inference type- and effect system to reconstruct the
type for an implicitly-typed program, and derives the abstract behaviour for a calcu-
lus supporting multi-threading concurrency, functions, and re-entrant locks. We have

33

proven the algorithm is sound and complete with regard to a non-deterministic specifi-
cation of the type system. To check for potential deadlocks on the abstract level, differ-
ent interleavings of the threads must be considered which easily leads to an explosion
of state space. To render a finite state space, we put an upper limit on re-entrant lock
counters, and bound the non-tail recursive function calls to abstract the behavioural ef-
fect into a coarser, tail-recursive one. The correctness of the abstraction with regard to
preserving potential deadlocks which occur in the original program can be shown anal-
ogously to the one in [8]. The reverse does not hold, i.e., a deadlock in the abstraction
does not necessarily exist in the concrete program, as the abstraction over-approximates
the actual behaviour of the program.

Related Work

Acknowledgements We thank Axel Simon for fruitful discussion and making available
his copy of [5].

References

1. R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential deadlocks with state analysis and
run-time monitoring. In S. Ur, E. Bin, and Y. Wolfsthal, editors, Proceedings of the Haifa
Verification Conference 2005, volume 3875 of Lecture Notes in Computer Science, pages
191–207. Springer-Verlag, 2006.

2. T. Amtoft, H. R. Nielson, and F. Nielson. Type and Effect Systems: Behaviours for Concur-
rency. Imperial College Press, 1999.

3. C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Ownership types for safe region-based
memory management in real-time Java. In ACM Conference on Programming Language
Design and Implementation (PLDI) (San Diego, California). ACM, June 2003.

4. E. G. Coffman Jr., M. Elphick, and A. Shoshani. System deadlocks. Computing Surveys,
3(2):67–78, June 1971.

5. L. Damas. Type Assignment in Programming Languages. PhD thesis, Laboratory for Founda-
tions of Computer Science, University of Edinburgh, 1985. CST-33-85.

6. L. Damas and R. Milner. Principal type-schemes for functional programming languages. In
Ninth Annual Symposium on Principles of Programming Languages (POPL) (Albuquerque,
NM), pages 207–212. ACM, January 1982.

7. F. Nielson, H.-R. Nielson, and C. L. Hankin. Principles of Program Analysis. Springer-Verlag,
1999.

8. K. I. Pun, M. Steffen, and V. Stolz. Deadlock checking by a behavioral effect system for lock
handling. Journal of Logic and Algebraic Programming, 81(3):331–354, Mar. 2012.

34

	Behaviour Inference for Deadlock Checking [0.1em] 9. July 2012
	Introduction
	Calculus
	Semantics

	Type system
	Effects
	Sub-effecting
	Typing rules
	Algorithmic formulation
	Soundness and completeness
	Preliminaries
	Soundness
	Completeness

	Conclusion
	References

